If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-20x^2-35x+10=0
a = -20; b = -35; c = +10;
Δ = b2-4ac
Δ = -352-4·(-20)·10
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-45}{2*-20}=\frac{-10}{-40} =1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+45}{2*-20}=\frac{80}{-40} =-2 $
| 68x+1332x-18=35(40x+60) | | 4.7=w/3.2 | | b-3=b+3 | | 3z=79 | | 41/2=x-21/2 | | f+1=91 | | 20+15h=110 | | z-10=71 | | 2=-3/4+w | | 693/21=n | | 775=s-172 | | 5/95=x/100 | | 14j=630 | | 11475/25=n | | w+2/5=1/6 | | 14j=360 | | h+544=152 | | 5(d+1)=10 | | p/3-3p/8=5 | | 5776/59=n | | 2x+30+3x+202=180 | | 24f=744 | | 2x+15=3x=20 | | 3/4=b+3/20 | | 5x2-40x+1607=0 | | 79=5x+14 | | 7x+4x-6x+3=-17 | | q+3=-73 | | x/50=2 | | 23=u/2-8 | | 29=8+3w | | u-50=8 |